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STABILITY OF SOLVING OPTIMIZATION PROBLEMS OF PARAMETERS 

OF RADIATIVE HEATING DEVICES 

E. K. Belonogov and D. S. Tkach UDC 536.33:517.9:519.6 

Results are given of a study of correctness of problems related to the deter- 
mination of optimal parameters of radiative heating devices from a given flux 
field of incident radiation. 

Computational-theoretical analysis of construction arrangement schemes of radiative 
heating devices (RHD) is one of the problems solved during the preparation of thermal tests 
of materials and structures on benches of a radiative heater [i]. Similar studies are re- 
quired for the determination of such (optimal) RHD parameters (the spatial location of the 
emitter, the screen shape, etc.), for which the realized conditions of thermal loading on 
the surface of the tested product corresonds fully to the given one. 

From the point of view of the theory of inverse problems (IP) of heat transfer the 
search for optimal RHD parameters belongs to the class of inverse problems of radiative 
heat transfer (IPRHT) of the projection type. Similar problems are naturally formulated as 
extremal, and to solve them one uses methods of the theory of mathematical programming [2]. 
A specific feature of inverse problems consists of the fact that in the general case they 
may be incorrect, as a consequence of which the condition of uniqueness and (or) stability 
of the solutiQn with respect to small varying input data may be violated [3]. 

In [4] was realized a parametric optimization of RHD, consisting of three sources of 
radiation and a planar screen, by means of one of the direct methods of nonlinear program- 
ming, the method of sliding tolerance. In this case of special studies no verification 
was carried out of the correctness of the statement of the problem mentioned. The purpose 
of the present study is a more detailed analysis of the given problem. 

For this we consider the geometric IPRHT, the unknowns in which being the vertical 
coordinates of radiative line sources, for which the distribution Einc(X) on a plate of in- 
finite length and finite width is closest to a uniform distribution with a given density 
Einc a = const. The distances between all radiators over horizontal directions were taken 
identical, while the peripheral radiators, independently of their total number, were lo- 
cated over the edges of the plate. The extent of nonuniformity of Einc(X) was characterized 
by the quantity 
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TABLE i. Original Data and Solution Results of Geometrical 
IPRHT 
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As in [4], as purpose functional (PF) we took the mean square deviation of the calculated 

field Einc(X) from the given ~inc: @-- (Einc.-V):Einc ...... l)ZdxJ �9 

Since in the problem considered Einc(X) depends only on the vertical coordinates of 
radiators, the purpose functional provides some (implicit) dependence on the varying parame- 
ters. Thus, ~ satisfies the general principles of the statement of extremal functions [5]: 
Its value is determined only by the input data, not varying during the solution, and by the 
varying parameters; the minimum of ~ is reached for values of the varying parameters corre- 
sponding to the unknown solution. As in [4], to minimize # we used the method of sliding 
tolerance. The determination of Einc(X) was carried out by the method discussed in [61. 

The simplicity of numerical realization of the method used and, as a consequence, the 
short computer solution time of the direct problem of radiative heat transfer made it pos- 
sible to carry out detailed studies of the effect on obtaining stable results of various 
IP statements, as well as several discretization parameters of the mathematical model and 
of the optimization method. 

With the purpose of analyzing the correctness of the original IPRHT statement we car- 
ried out a series of calculations, in which we varied the following input data: the number 
of radiators n = 6, ii, and 16 (we respectively also varied the number of zones by which 
the heated surface was divided N = n - i); the initial size of the multiple boundary t o 
(one of the parameters in the sliding tolerance method); the initial search point yi ~ i = 
i, n; and the assigned flux density of the incident radiation Einc ~ The finite deformation 
size of the multiple boundary was taken to be 10 -4 in all cases considered. The numerical 
values found without account of a priori information for the minimum of the purpose function- 
al Cmin, of the nonuniformity 6E and of the final number of steps of optimization search mf 
(the number of solutions of the direct problem) for n = ii are shown in Table 1 (the first 
four variations). The corresponding ordinates Yi of the radiators are shown in Fig. i (the 
digits at the curves of the figures correspond to the numbers of computational variations in 
Table I). For smoothness the optimal coordinates of radiator locations are combined by seg- 
ments of straight lines. All results are shown in dimensionless form, for which the geomet- 
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Fig. i. Computational scheme andoptimal coordinates of 
radiators, obtained by solving the inverse problem of radi- 
ative heat transfer without account of a priori information 
(n = ii). 

Fig. 2. Optimal coordinates of radiators, found by solving 
the regularized statement of the problem. 

ric sizes are with respect to the plate width, and the energy characteristics - to the power 
of a single radiator. 

Even a qualitative estimate of the results obtained indicatesstrong dependence o~ the 
unknown solution on the input data. 

Variation Qf method parameters (t 0) and of the initial search peint (yi ~ affected not 
only the solution time, but also its final result, implying violation of the uniqueness con- 
dition. Small perturbations of the input data (Einc ~ led to substantial changes in the 
solution, making it possible to draw conclusions concerning~nonsatisfaction of the stability 
condition. It is also necessary to note that all "curves" obtained, on which radiators 
are located, are nonsmooth and nonsymmetric with respect to the middle of the plate; this 
is in bad agreement with the intuitive concept of optimal distribution of radiator heights 
(on the main symmetric curve, somewhat lowered toward the edges of the plate). 

Similar results were~ also obtained for a number of madiators n = 6 and. l&, which qual- 
itatively coincide completely with the case considered, n = ii. 

An important aspect is the good observed optimization convergence. In all cases the 
optimum search was carried out by the condition of achieving a given accuracy, and this im- 
plies that the~ deformation of multiple boundaries at the last steps of the search were 
found near the minimum of the PF. The dependence of the solution on the initial search point 
can be explainedby the coincidence of the multiple:boundary in the region of various local 
minima, which implies multiple extremum nature of the PF surface. We also note that the dif- 
ferent values of ~min at points of various local minima are quite small. 

To obtain the regularized IPRHT solutions an approach is used, based on account of the 
a priori information, and consisting of searching solutions on a manifoldnarrower than the 
original range of allowedvalues of independent variahles. In this case, dependingon the 
method, of assigning this set, the original incorrect problem, can be transformed into a:con- 
ditionally correct one [3]. Three series of problems were solved by using thisapproach: 
In the: second series (variations 5-7) the symmetric location of radiators was assigned a 
priori, and in the third (variations 8-10) - additional restrictions of the form yi+ I ~ Yi 
(i = i, 2 ..... n/2) for n, i = i, 2, .... (n+l)/2 for odd n were imposed on the radiator 
ordinates. A condition of radiator location on the parabola y = x 2 + c, whose coefficients 
were also determined by minimizingthe PF, was assigned in the fourth series of calculations 
(varia~tions 11-13). 
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As seen from Fig. 2, imposing the symmetry condition leads to some decrease in the 
spread of source coordinates and lowering of nonuniformities in the distribution of Einc(X). 
For n = 6 the symmetry requirement directly allowed to obtain a smooth curve of radiator 
locations. As a result of solving third series problems we succeeded in obtaining, for all 
n, smooth curves of radiator locations in height over the surface, which agree well with in- 
tuitive concepts on optimal solutions. The results of solving problems of the third and 
fourth series are very close, therefore in Fig. 2 they correspond to the same curves. 

As can be expected, a decrease in the number of varying parameters during the imposi- 
tion of further conditions on radiator locations leads to lowering in the number of steps 
of optimized search, while in other cases it is quite substantial. The quality of solutions 
obtained in all cases with account of a priori information is enhanced (6E is decreased). 
We note that in the case of using a priori information small (up to 5%) variations in Einc ~ 
corresponded to equally small (up to 4.5%) changes in Yi obtained. 

We note here that account of a priori information, as in any other regularization meth- 
od, does not provide total guarantee of satisfying the correctness condition. However, the 
results obtained by numerical modeling make it possible to talk about a high Probability of 
successful use of this approach so as to obtain stable solutions of geometric IPRHT. 

Thus, the following conclusions can be drawn on the basis of the studies carried out. 

i. In the general case the incorrectness was shown of the geometric inverse problem 
of heat transfer, related to the determination of optimal radiator arrangement in an RHD 
from a given field Einc ~ . It was established that the PF relief is a mildly sloping support- 
ing surface with a large number of very small scale oscillations. 

2. The use of a priori information in the form of imposing restrictions dictating the 
arrangements of radiators in an RHD allows to reduce the original incorrect problem to a 
conditionally correct one, to substantially reduce the number of steps of the optimization 
search, and correspondingly the total time of computer solution. 

The results obtained justify the recommendation of studying regularization methods in 
the case of using more complicated mathematical models of radiative heat transfer in the 
practice of numerical parameter optimization of radiative heating devices. 

NOTATION 

n, number of radiators; N = n - i, number of zones into which the plate surface is div- 
ided; t o and tf, initial and final polyhedron sizes; ~ = {Yi} (i = i, n), vector of vertical 
coordinates of radiator arrangement; Einc(X), Einc~ calculated and assigned flux density 
distributions of the incident radiation; s plate thickness; r purpose functional; 6E, non- 
uniformity of flux density distribution of incident radiation; and mf, final number of steps 
of the optimization search. 

i. 

, 

3. 

4. 

5. 

6. 

LITERATURE CITED 

G. B. Sinyarev, E. K. Belonogov, V. M. Gradov, and V. A. Tovstonog, Achievements in 
Radiative Heat Transfer, Proc. VI All-Union Conf. Radiative Heat Transfer in Technol- 
ogy, Minsk (1987), pp. 84-94. 
O. M. Alifanov, Identification of Heat Transfer Processes of Aircraft [in Russian], 
Moscow (1979). 
A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrect Problems [in Russian], 
Moscow (1979). 
E. K. Belonogov and M. S. Vinogradov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, 
No. 4, pp. 14-19 (1986). 
G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Optimization: Methods 
and Applications, Wiley, New York (1983). 
Yu. D. Khodzhaev, Tr. TsAGI, No. 975, 3-22 (1965). 

357 


